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Soliton scattering from a finite cnoidal wave train in a fiber
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We analyze the scattering of a soliton from a cnoidal wave train in a fiber theoretically as well as numeri-
cally. Solitons recover their original shapes and velocities after collisions, while shapes of cnoidal waves are
nearly preserved during collisions. The effect of collisions is described by the change of velocities of solitons,
and the theoretical predictions are in good agreement with numerical results.
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There exist many interesting optical devices that incorpo- (1) A superposed solution of the soliton and the cnoidal
rate soliton phenomena in optical materials. For instance, theave is constructed using the DarbouxeRland transfor-
time-domain chirp switcli1] as well as the soliton-dragging mation (DBT). Solutions as well as important physical pa-
and soliton-trapping logic gatd®] are important examples rameters like the DBT parameter are explicitly expressed us-
of soliton applications. To support these technologies it iSng the Jacobi theta functions.
needed to understand theoretically collisions between soli- (2) Numerical analyses show that collision processes pre-
tons or between solitons and other wave packets. Up to NOWerve the soliton characteristics when the amplitude of the
main theo.retlcal effo_rts were conc_entrqted on scatterings P&inite CNW train is less than some proper value. The main
tween solitons, leading to the estimation of phase and tim@tect of the collisions is then ascribed to the change of ve-
shift in elastic collisions. They are then applied to deV'Selocity of solitons during collisions.

e o e o0 lase oy () The DBT parameler ofthe nonlinearly uperposed so-
' 9 ution is found to remain unchanged during collision pro-

other finite wave trains remain to be seriously investigated. | ; . . . .

is partially due to the difficulty of theoretical analysis com- ©€SS€S- This fact gives a relationship between the velocity of
pared to the elastic scattering. But soliton collisions with@ SCliton during a collision process with that of a finite CNW
rain.

finite wave trains seem to have important applications i

various situations and have been on the forefront of active All these results are coincident with those of REf],
researches in some cagdsS]. which can be thought of as a special case of this paper. We

In this respect, recent theoretical analysis on soliton colMight expect that these aspects of collisions will be persis-
lisions with continuous wavéCW) trains of finite width[6] tent for more general collisions. But a lack of theoretical
was a new attempt on this type of problems. This work,tools to analyze these situations is the main obstacle in un-
based on the existence of nonlinearly superposed solutions gerstanding these collisions.
the soliton and the infinite continuous wave in the nonlinear The propagation of light waves in a fiber is described by
Schradinger (NLS) equation, calculates the change of thethe following NLS equation:
velocity of a soliton when it encounters a finite CW train.

The predictions were in good agreement with numerical ex- _

periments. It was also found that solitons restore their origi- iyt a* g+ 2| | >=0, (1)

nal shapes and velocities after the scatterings, even though

they somewhat lose their identities during the scattering as — _ _

they exchange energies periodically with CW light. Despitewhered=d/ 9z, d=dldz, andz=x andz=t—x/v, represent
their intrinsic instabilities, finite CW lights were also found the distance of propagation along the fiber and(teearded

to maintain their identities more or less. time. The NLS equation has the following cnoidal wave so-

It is then of important necessity to find new collision pro- lution:
cesses between solitons and other finite wave trains that are
manageable to theoretical and numerical analyses. In this _ _
paper we extend the previous resultd &f to those of colli- ¥(z,2)=pdn(x,k)e', (2
sions between the soliton and the cnoidal wa@&lW), an-
other famous solution of the NLS equatipr]. For this, we _ o
construct the nonlinearly superposed solution of the solitorwhere y=p(z—vz), {=[vz/2+p?(2—k?)z—v?z/4] and
and the cnoidal wavéof infinite width), and perform nu- dn is the standard Jacobi elliptic function. Hereis the
merical analyses on collisions between the soliton andelocity of the cnoidal wave ankle (0,1) is the modulus of
the CNW train having finite width. The conclusion the Jacobi function. As far as elliptic functions are involved,
of our analysis can be summarized by the following threewe employ terminology and notation of Ré&] without fur-
facts: ther explanations. To obtain a superposed solution of a soli-

ton and a cnoidal wavi@], we need to first find a solution of
the following linear equations associated with the NLS equa-
*Email address; hjshin@khu.ac.kr tion,
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(31) ( i lﬂc(Z,?)) 51)
Jd = _ ,
S, —y(z,2*  —IN )\ S2
isl) ( —2iN2+i]ye(2,2)|? —zwc<z,?>+ia¢c<z,_>><sl)
J = _ _ _ .
Sz 2No(2,2)* +idpo(2,2)* 2iN2+i|ye(2,2)|? Sz

)

Then a solution that describes the superposition of a solitothe case of the collision of a soliton with a CW wave when
and a cnoidal wave can be constructed using the Darbouxwe takek— 0 (this is the case treated [6]), and to that of
Backlund transformation10] scattering of two solitons fok— 1.

Equations(4) and (5) show that the soliton in a cnoidal

_1 JR—
= ey S SI wave moves along the path IB=Im(yz+ By)=const
(2D =vzD+ 2 2+ g the path Iv=Im(yz+ By ’
Vo-s(2.2)=he(2,2) +21 (A =0T S, s; @ such that the velocity of the soliton becomes
Using the fact thas;’s satisfy the associated linear equations my 1 -1
in Eq. (3), it can be explicitly checked that, ¢ in Eq. (4) is Usol= — (m— U——v) (8
g

a solution of the NLS equation. Explicitly, the solution of the

linear equations in Eq.3) can be written down 1 . . . . - .
q q3) aL1] To describe the collision of a soliton with a finite CNW train,

_ _ —iu y+iu we need to find the soliton characteristics when it is outside
s, =gl e'Aez(W) GO(T of the wave train. For this, we take the amplitude of the
cnoidal wave in Eq.4) to be zero, i.ep—0. But ¢, _¢
B —iu x—iu X becomes singular unless we simultaneously takeO. In
—Me 'A91<W> 93(?) / o(ﬁ), fact, due to the following reason we takeu— 0 with their
) ratios fixed by the constrailt=—(wg+iAg)/2=const. As
' . —iu Y+iu we can see in Fig. 3, numerical experiments show the ampli-
s,=e 1472 —e'Aal(W) 05 7) tude of the soliton, i.eA —\* in Eq. (4) is almost preserved
during the collision. Theoretically, it is also reasonable to
_ —iu Y—iu Y take the DBT parametex conserved as it is a physical pa-
+Me 40, W) 00(?) / O(R)’ rameter describing the amplitude and the velocity of a soli-

ton. Actually this fact is already used [B] to successfully
describe the soliton and CW wave scattering.

For the simplicity of discussions, we take=0p =
hereafter. Then in the limit ofgf,u—0), Eq. (7) becomes
cnz(u,k’)] u=—p/(wst+iAg), and Eq.(4) becomes

whereM is an arbitrary complex number ankl= ’y?—l— Bx
with
2

y=- % dré(u,k’) +

srf(u,k’)

B=iE{sin"'[sn(iu,k)]} + ELH % dn(u::(:?s:’k :

sn(u,k”)dn(u,k’
N n(u,k’)dn( )’ ®)
cn(u,k”) 2
1.5
andK andE are complete elliptic integrals of the first and the 1
second kinds, respectively. In the above formulés related ¢ 50

to the DBT parametex as follows: 10 —

dn(u,k”)en(u,k’)
snu,k’)

)\:

v o p
—+ = 7
4 2 @
_10-4
When we explicitly substitute the result of Ec) into Eq. 10
(4), we can obtain a superposed solution of a soliton and a FIG. 1. Intensity profiletheoretical of soliton + infinite CNW
cnoidal wave. Figure 1 shows such an example, which werain with parameteré\=1.84, w,=—0.7, p=1.3, k=0.9, v =0,

plot with typical parameters. The above result is reduced tandu=—0.38+0.63.
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FIG. 2. (a) Soliton velocity vs CNW amplitude for k=0.24,
(b) soliton velocity vs CNW modulu& for p=1, with A;=1.84,
wg=—0.7.

e s=AssechiAgz+ ZWSAs?]eXF[i{_WsZ_ (Wg_ Ag)?}].

©)

which describes a soliton with amplitude, and frequency
w,. On the other hand, when we take-\* = —iA,—0 in
Eq. (4), it becomes the cnoidal wawug, .
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FIG. 4. Position shift vs width of CNW train for amplitudgs
=0.5,1,1.5,2(a) k=0.24, (b) k=0.72 with A;=1.84, w,=—0.7,
andv =0.

Now, the velocity of a soliton inside the CNW train can typical values ofAg, wg, p, andk [12]. It shows that the

be expressed as a functionAf, wg, p, andk using Eq.(8)
where we takei=u(Aq,ws,p,k) as a solution of Eq(7) for
a given soliton characteristic= — (ws+iAg)/2. When the

impedance effect of a CNW train on a soliton is smaller than
that of a CW train.
Figure 3 describes the collision of a soliton with a finite

soliton resides outside the CNW train, the velocity becomegNW train (with the same parameters as in Fig.that was

—(2wg) "1, which is obtained using Eq9) or by taking

obtained using the split-step fast Fourier transform algo-

p,u—0 on the soliton velocity inside the CNW train. Figure rithm. The soliton injected into the right side of the CNW
2 shows the velocity of a soliton inside a CNW train for train reappears on the left side of the train after the collision.

FIG. 3. Intensity profile(numerica) of soliton + finite CNW
train with the same parameters as in Fig. 1.

It can be clearly seen that the velocity of the soliton changes
during collision. Numerical analyses show that this type of
collision is maintained until the amplitude of the CNW train
almost reaches that of the soliton, where the instability of the
CNW train does not allow the identification of the soliton
anymore.

The following numerical plots also confirm the above pic-
ture of a soliton collision with a CNW train. Figure 4 plots
the moving distanc&z= Ax of a soliton along a time width
of a CNW train,Az. In numerical simulations, we took®
=6 as the time interval the soliton moves without encoun-
tering the CNW train and z (x axis in Fig. 4 as the interval
for the soliton lying inside the CNW train. Thus, the total

moving distance 4z, y axis in Fig. 4 is theoreticaIIyA?
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1 - - - - solitons was described by the phase and time shift conven-
tionally. The termsg;(x/2K) in Eq. (5) bend the curves in
10 Fig. 4, especially for large values &f Figure 5 plots the
g moving distance of a soliton along the amplitygef CNW
= g waves, where we take the time width Ag=9. This figure
g also shows that the theoretical curves fit well with the nu-
] merical results without any fitting parameters.
s 8 All these figures show the validity of our picture for the
:‘§ soliton-CNW train collision. This description can be applied
e 7 to the scattering of multisolitons with a CNW train too. In
2 this case, each soliton experiences a change of velocity dur-
] 6 ing the collision with a finite CNW train, while the CNW
train itself suffers no essential change. Our description of the
collision in terms of velocity changes could be a good start-
50 0'5 ] 1'5 2 25 ing point for an approximate description of collisions be-
’ CNW amplitude ’ tween various light-wave packets. Especially solutions ex-

pressed in terms of the DBT parameter will be very useful
FIG. 5. Position vs CNW amplitude fok=0,0.72,0.96 with  for this type of a description as it remains unchanged during
As=1.84,ws=—0.7, andv =0. collision processes. Possible extension of our method to
more general collision phenomena might be achieved using a
— —(2wy) 2D +ve,Az, which is also plotted in Fig. 413]. WKB-type_approxir_natipn and_ i_s reserved for future stydy.
Numerical results are well in accordance with theoreticall he instability-dominating collision processes where solitons
plots for wide ranges oAz andp, k. Especially, the linear loose their identities would be another important and inter-

dependence of the moving distance Az convinces us esting research area to be investigated.
about the concept of the change of velocities of solitons in-
side CNW trains. Note that the effect of the collision of two  This work was supported by the Brain Korea 21 Project.
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