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Soliton scattering from a finite cnoidal wave train in a fiber
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We analyze the scattering of a soliton from a cnoidal wave train in a fiber theoretically as well as numeri-
cally. Solitons recover their original shapes and velocities after collisions, while shapes of cnoidal waves are
nearly preserved during collisions. The effect of collisions is described by the change of velocities of solitons,
and the theoretical predictions are in good agreement with numerical results.
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There exist many interesting optical devices that incor
rate soliton phenomena in optical materials. For instance,
time-domain chirp switch@1# as well as the soliton-draggin
and soliton-trapping logic gates@2# are important example
of soliton applications. To support these technologies i
needed to understand theoretically collisions between s
tons or between solitons and other wave packets. Up to n
main theoretical efforts were concentrated on scatterings
tween solitons, leading to the estimation of phase and t
shift in elastic collisions. They are then applied to dev
reversible optical logic gates, etc@3#. Contrary to elastic col-
lisions between solitons, scatterings between solitons
other finite wave trains remain to be seriously investigated
is partially due to the difficulty of theoretical analysis com
pared to the elastic scattering. But soliton collisions w
finite wave trains seem to have important applications
various situations and have been on the forefront of ac
researches in some cases@4,5#.

In this respect, recent theoretical analysis on soliton c
lisions with continuous wave~CW! trains of finite width@6#
was a new attempt on this type of problems. This wo
based on the existence of nonlinearly superposed solution
the soliton and the infinite continuous wave in the nonlin
Schrödinger ~NLS! equation, calculates the change of t
velocity of a soliton when it encounters a finite CW trai
The predictions were in good agreement with numerical
periments. It was also found that solitons restore their or
nal shapes and velocities after the scatterings, even tho
they somewhat lose their identities during the scattering
they exchange energies periodically with CW light. Desp
their intrinsic instabilities, finite CW lights were also foun
to maintain their identities more or less.

It is then of important necessity to find new collision pr
cesses between solitons and other finite wave trains tha
manageable to theoretical and numerical analyses. In
paper we extend the previous results of@6# to those of colli-
sions between the soliton and the cnoidal wave~CNW!, an-
other famous solution of the NLS equation@7#. For this, we
construct the nonlinearly superposed solution of the sol
and the cnoidal wave~of infinite width!, and perform nu-
merical analyses on collisions between the soliton a
the CNW train having finite width. The conclusio
of our analysis can be summarized by the following th
facts:
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~1! A superposed solution of the soliton and the cnoid
wave is constructed using the Darboux-Ba¨cklund transfor-
mation ~DBT!. Solutions as well as important physical p
rameters like the DBT parameter are explicitly expressed
ing the Jacobi theta functions.

~2! Numerical analyses show that collision processes p
serve the soliton characteristics when the amplitude of
finite CNW train is less than some proper value. The m
effect of the collisions is then ascribed to the change of
locity of solitons during collisions.

~3! The DBT parameter of the nonlinearly superposed
lution is found to remain unchanged during collision pr
cesses. This fact gives a relationship between the velocit
a soliton during a collision process with that of a finite CN
train.

All these results are coincident with those of Ref.@6#,
which can be thought of as a special case of this paper.
might expect that these aspects of collisions will be per
tent for more general collisions. But a lack of theoretic
tools to analyze these situations is the main obstacle in
derstanding these collisions.

The propagation of light waves in a fiber is described
the following NLS equation:

i ]̄c1]2c12ucu2c50, ~1!

where]5]/]z, ]̄5]/] z̄, andz̄[x andz[t2x/vg represent
the distance of propagation along the fiber and the~retarded!
time. The NLS equation has the following cnoidal wave s
lution:

cc~z,z̄!5p dn~x,k!ei z, ~2!

where x5p(z2v z̄), z5@vz/21p2(22k2) z̄2v2z̄/4# and
dn is the standard Jacobi elliptic function. Herev is the
velocity of the cnoidal wave andkP(0,1) is the modulus of
the Jacobi function. As far as elliptic functions are involve
we employ terminology and notation of Ref.@8# without fur-
ther explanations. To obtain a superposed solution of a s
ton and a cnoidal wave@9#, we need to first find a solution o
the following linear equations associated with the NLS eq
tion,
©2001 The American Physical Society06-1
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Then a solution that describes the superposition of a sol
and a cnoidal wave can be constructed using the Darbo
Bäcklund transformation@10#

cc2s~z,z̄!5cc~z,z̄!12i ~l2l* !S s2

s1
1

s1*

s2*
D 21

. ~4!

Using the fact thatsi ’s satisfy the associated linear equatio
in Eq. ~3!, it can be explicitly checked thatcc2s in Eq. ~4! is
a solution of the NLS equation. Explicitly, the solution of th
linear equations in Eq.~3! can be written down as@11#

s15ei z/2FeiDu2S 2 iu

2K D u0S x1 iu

2K D
2Me2 iDu1S 2 iu

2K D u3S x2 iu

2K D G Y u0S x

2K D ,

~5!

s25e2 i z/2F2eiDu1S 2 iu

2K D u3S x1 iu

2K D
1Me2 iDu2S 2 iu

2K D u0S x2 iu

2K D G Y u0S x

2K D ,

whereM is an arbitrary complex number andD5g z̄1bx
with

g52
p2

2 Fdn2~u,k8!1
cn2~u,k8!

sn2~u,k8!
G ,

b5 iE$sin21@sn~ iu,k!#%1
E

K
u1

1

2

dn~u,k8!cn~u,k8!

sn~u,k8!

1
sn~u,k8!dn~u,k8!

cn~u,k8!
, ~6!

andK andE are complete elliptic integrals of the first and th
second kinds, respectively. In the above formula,u is related
to the DBT parameterl as follows:

l5
v
4

1
p

2

dn~u,k8!cn~u,k8!

sn~u,k8!
. ~7!

When we explicitly substitute the result of Eq.~5! into Eq.
~4!, we can obtain a superposed solution of a soliton an
cnoidal wave. Figure 1 shows such an example, which
plot with typical parameters. The above result is reduced
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the case of the collision of a soliton with a CW wave wh
we takek→0 ~this is the case treated in@6#!, and to that of
scattering of two solitons fork→1.

Equations~4! and ~5! show that the soliton in a cnoida
wave moves along the path ImD5Im(g z̄1bx)5const,
such that the velocity of the soliton becomes

vsol52S Im g

Im bp
2

1

vg
2v D 21

. ~8!

To describe the collision of a soliton with a finite CNW trai
we need to find the soliton characteristics when it is outs
of the wave train. For this, we take the amplitude of t
cnoidal wave in Eq.~4! to be zero, i.e.p→0. But cc2s
becomes singular unless we simultaneously takeu→0. In
fact, due to the following reason we takep,u→0 with their
ratios fixed by the constraintl[2(ws1 iAs)/25const. As
we can see in Fig. 3, numerical experiments show the am
tude of the soliton, i.e.l2l* in Eq. ~4! is almost preserved
during the collision. Theoretically, it is also reasonable
take the DBT parameterl conserved as it is a physical pa
rameter describing the amplitude and the velocity of a s
ton. Actually this fact is already used in@6# to successfully
describe the soliton and CW wave scattering.

For the simplicity of discussions, we takev50,vg5`
hereafter. Then in the limit of (p,u→0), Eq. ~7! becomes
u52p/(ws1 iAs), and Eq.~4! becomes

FIG. 1. Intensity profile~theoretical! of soliton 1 infinite CNW
train with parametersAs51.84, ws520.7, p51.3, k50.9, v50,
andu520.3810.63i .
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cc2s5As sech@Asz12wsAsz̄#exp@ i $2wsz2~ws
22As

2!z̄%#,
~9!

which describes a soliton with amplitudeAs and frequency
ws . On the other hand, when we takel2l* 52 iAs→0 in
Eq. ~4!, it becomes the cnoidal wavecc .

Now, the velocity of a soliton inside the CNW train ca
be expressed as a function ofAs , ws , p, andk using Eq.~8!
where we takeu5u(As ,ws ,p,k) as a solution of Eq.~7! for
a given soliton characteristicl52(ws1 iAs)/2. When the
soliton resides outside the CNW train, the velocity becom
2(2ws)

21, which is obtained using Eq.~9! or by taking
p,u→0 on the soliton velocity inside the CNW train. Figu
2 shows the velocity of a soliton inside a CNW train f

FIG. 2. ~a! Soliton velocity vs CNW amplitudep for k50.24,
~b! soliton velocity vs CNW modulusk for p51, with As51.84,
ws520.7.

FIG. 3. Intensity profile~numerical! of soliton 1 finite CNW
train with the same parameters as in Fig. 1.
02660
s

typical values ofAS , ws , p, and k @12#. It shows that the
impedance effect of a CNW train on a soliton is smaller th
that of a CW train.

Figure 3 describes the collision of a soliton with a fini
CNW train ~with the same parameters as in Fig. 1! that was
obtained using the split-step fast Fourier transform al
rithm. The soliton injected into the right side of the CNW
train reappears on the left side of the train after the collisi
It can be clearly seen that the velocity of the soliton chan
during collision. Numerical analyses show that this type
collision is maintained until the amplitude of the CNW tra
almost reaches that of the soliton, where the instability of
CNW train does not allow the identification of the solito
anymore.

The following numerical plots also confirm the above p
ture of a soliton collision with a CNW train. Figure 4 plot
the moving distanceD z̄5Dx of a soliton along a time width
of a CNW train,Dz. In numerical simulations, we took 2D
56 as the time interval the soliton moves without encou
tering the CNW train andDz (x axis in Fig. 4! as the interval
for the soliton lying inside the CNW train. Thus, the tot
moving distance (D z̄, y axis in Fig. 4! is theoreticallyD z̄

FIG. 4. Position shift vs width of CNW train for amplitudesp
50.5,1,1.5,2.~a! k50.24, ~b! k50.72 with As51.84, ws520.7,
andv50.
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52(2ws)
212D1vsolDz, which is also plotted in Fig. 4@13#.

Numerical results are well in accordance with theoreti
plots for wide ranges ofDz and p, k. Especially, the linear
dependence of the moving distance onD z̄ convinces us
about the concept of the change of velocities of solitons
side CNW trains. Note that the effect of the collision of tw

FIG. 5. Position vs CNW amplitude fork50,0.72,0.96 with
As51.84, ws520.7, andv50.
,

.
J.
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solitons was described by the phase and time shift conv
tionally. The termsu i(x/2K) in Eq. ~5! bend the curves in
Fig. 4, especially for large values ofk. Figure 5 plots the
moving distance of a soliton along the amplitudep of CNW
waves, where we take the time width asDz59. This figure
also shows that the theoretical curves fit well with the n
merical results without any fitting parameters.

All these figures show the validity of our picture for th
soliton-CNW train collision. This description can be applie
to the scattering of multisolitons with a CNW train too. I
this case, each soliton experiences a change of velocity
ing the collision with a finite CNW train, while the CNW
train itself suffers no essential change. Our description of
collision in terms of velocity changes could be a good sta
ing point for an approximate description of collisions b
tween various light-wave packets. Especially solutions
pressed in terms of the DBT parameter will be very use
for this type of a description as it remains unchanged dur
collision processes. Possible extension of our method
more general collision phenomena might be achieved usin
WKB-type approximation and is reserved for future stud
The instability-dominating collision processes where solito
loose their identities would be another important and int
esting research area to be investigated.
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